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NUMERICAL AND EXPERIMENTAL STUDY OF THE FINE STRUCTURE

OF A STRATIFIED FLUID FLOW OVER A CIRCULAR CYLINDER

UDC 551.555.9V. A. Gushchin,1 V. V. Mitkin,2

T. I. Rozhdestvenskaya,1 and Yu. D. Chashechkin2

The fine structure of the flow field of a continuously stratified fluid around a circular cylinder for
small values of the Froude number was investigated in laboratory and numerical experiments. The
parameters of the leading perturbation, the internal-wave field, and the cylinder wake were calculated
using a two-dimensional model. The existence of the previously experimentally observed high-gradient
density layers in the wake that are parallel to the flow axis was for the first time confirmed by nu-
merical calculations. Results of the numerical and experimental studies are in good agreement with
each other and with analytical models for small values of the Froude number.
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Introduction. The space–time characteristics of continuously stratified fluid flows over two-dimensional
obstacles, their stability, and critical restructuring conditions are of scientific and practical interest because in nature
and in technological devices, fluids are stratified due to nonuniform distributions of temperature and concentration
of dissolved or suspended materials.

In an analysis of stratified fluid flows taking into account stratification, the equations of hydrodynamics are
supplemented by a buoyancy force and the diffusion equation for the stratifying component. As a result, along with
a boundary layer, a trailing wake, bottom vortices, and a vortex trail, the flow structure contains internal waves
and a leading perturbation. It should be noted that a stratified fluid is a nonequilibrium medium, in which even in
the absence of external destabilizing factors, boundary flows with individual velocity and density scales are formed
on impermeable surfaces because of the interruption of the flow of the stratifying component [1]. In this case, the
solution of the problem is considerably complicated by the occurrence of new small and large parameters due to
the weakness of the stratification and the smallness of the terms due to diffusion.

The most widely used stratification models are the two-layer fluid model, for which calculations are performed
by analogy with surface waves, and the exponentially stratified model. Because of the weak stratification in the
formulation of the problem, the Navier–Stokes equation are written in the Boussinesq approximation, in which the
density changes are considered negligibly small in all terms of the equation, except in the term containing gravity
that takes into account buoyancy.

There have been extensive experimental studies of linearly stratified fluid flows around a horizontal cylinder
(exponential and linear density distributions are indistinguishable within the experimental error in the case of
weak stratification). In most of these studies, the flow structure was visualized by optical methods and geometrical
characteristics of waves, vortices, and wakes were determined. The phenomenological classification of flow regimes [2]
was extended and supplemented in [3] taking into account high-gradient layers in wakes. New types of instability
of laminar flow past a cylinder at low Froude number were found in [4].
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Analytical calculations of leading perturbations use the assumption that the fluid is ideal and that all
perturbations damp at large distances ahead of the obstacle [5]. Aksenov et al. [6] examined the range of applicability
of this approach to the analysis of the main features of flow around a cylinder: blocked fluid ahead of the obstacle,
attached internal waves, hanging vortex systems (rotors by the terminology of [6]). Although formally the method
of [5] applies to flow calculations for large values of the Froude number Fr = U/ND > 0.5 (U is the velocity of the
cylinder; D is the diameter of the cylinder; and N is the buoyancy frequency), it is also appropriate at low Froude
number.

In the numerical modeling of stratified flows, extensive use has been made of the splitting method, which
was originally proposed for the calculation of homogeneous fluid flows [7]. A detailed description of this method and
various examples of its use for two- and three-dimensional nonstationary stratified fluid flows, including free-surface
flows, are given in [8, 9]. Results of calculations and experimental studies of attached internal waves past a cylinder
are in good agreement [10]. Although the method of splitting in physical parameters has large potential, it has
previously been employed primarily to calculate large-scale elements of wakes and attached internal waves. The fine
structure elements of stratified flows underlying the phenomenological classification of flow regimes has not been
analyzed previously. The advent of new powerful computers allows a better use of the potential of computational
approaches and detailed flow calculations.

The purpose of the present work was to adapt the splitting method [7] (which has been successfully used to
analyze homogeneous fluid flows) to the calculation of the structure of two-dimensional stratified flows, to compare
results of computational and laboratory experiments for the same values of the dimensionless parameters of the
problem, and to analyze the transverse flow pattern past a cylinder.

1. Formulation of the Problem. We consider transverse flow of a linearly stratified fluid around a cylinder
of diameter D; the fluid density ρ(y) = ρ0(1−y/Λ+s) decreases with increasing height y due to a change in salinity
[ρ0 = ρ(0) = 1, Λ is the stratification scale, and s is the salinity perturbation]. This phenomenon is described by
the system of equations that includes the Navier–Stokes equations written in the Boussinesq approximation, which
is applicable due to the weak stratification, the fluid compressibility equation, and the salt diffusion equation:

∂v

∂t
+ (v∇)v = −∇p

ρ0
+ gs + ν∇2v,

div v = 0, (1)

∂s

∂t
+ (v∇)s = κs∇2s +

1
Λ

vy .

Here v is the velocity, p is the pressure, g is the acceleration of gravity, ν is the kinematic viscosity, and κs is the
salt diffusion coefficient. Stratification is characterized by the linear scale Λ = |d(ln ρ)/dy|−1 and the buoyancy
period Tb = 2π/N = 2π

√
Λ/g [11]. The flow velocity at infinity is equal to U . In the calculations and experiments,

the fluid with a buoyancy period Tb = 25.2 was studied.
The boundary conditions include unperturbed flow conditions on the contour G at a large distance from the

center: u = U cos θ, v = −U sin θ, p = 0, and s = 0; the attachment condition v|Γ = 0, and the condition of the
absence of the normal component of the salinity flux ∂s/∂n|Γ = 0 on the surface of the cylinder Γ [u and v are the
velocity components along the polar coordinate (r, θ)].

The initial condition for the velocity is the unperturbed plane-parallel flow u = U cos θ, v = −U sin θ taking
into account the boundary conditions on the cylinder surface.

The basic scales of the problem (in addition to the external scales — the body size and the buoyancy scale) are
the dimensions of the structural elements of the flow: the length of the attached internal wave λ = UTb = 2πU/N ,
the thickness of the velocity boundary layer δu = ν/U , and the thickness of the density boundary layer δρ = κs/U .
The scale of the internal boundary flow due to stratification is δN =

√
ν/N , the scale of the corresponding density

inhomogeneity is equal to δs =
√

κs/N [2].
The ratios of the basic scales form the main dimensionless parameters: the Reynolds number Re = D/δu

= UD/ν, the Peclet number Pe = D/δρ = UD/κs (or the Schmidt number Sc = Pe / Re), and the internal Froude
number −Fr = λ/(2πD) = U/(ND); the scale ratio is C = Λ/D. Since the stratification is weak and the kinetic
coefficients are small, the values of the basic scales differ significantly: Λ � D � δu � δρ, λ � δν � δs. The
technique of the laboratory experiment and the computational approaches were developed taking into account the
necessity of distinguishing structural elements with different scales.
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Fig. 1. Computational flow domain.

For the flow velocity U as the velocity scale and the cylinder diameter D as the length scale, system (1) is
written in dimensionless form as follows:

∂v

∂t
+ (v∇)v = −∇p

ρ0
+

sg

Fr2 |g|(D/Λ)
+

1
Re

∇2v,

div v = 0, (2)

∂s

∂t
+ (v∇)s =

1
Pe

∇2s +
Dvy

Λ
.

The computational domain is enclosed between two concentric circles — the boundary of the cylinder Γ and the
conditional boundary G behind which there is the unperturbed region (Fig. 1). The fluid flow moving around the
motionless cylinder at velocity U is directed along the x axis (in the experiment, the cylinder moves in a motionless
fluid). The calculations are performed using polar coordinates (r, θ) with origin at the center of the cylinder. The
outer boundary is at a distance (80–100)D, depending on the conditions of the problem.

2. Computational Procedure. For convenience, the computational domain is transformed to a rectan-
gular region with sides z in the horizontal direction and θ in the vertical direction by means of the substitution
r = R(z) = 1 + αz + z3 with the transformation coefficient α = 0.2

√
2/ Re. The new orthogonal coordinate system

(z, θ), where z ∈ [0,∞] and θ ∈ [0, 2π], is related to the Cartesian system by the transformation x = R(z) cos θ,
y = R(z) sin θ. The computational grid in the coordinates z and θ is uniform and is more convenient than polar
grids in using finite-difference methods. At the same time, this grid provides a better resolution of flow singularities
near the cylinder.

System (2) is solved using the method of splitting in physical variables with an explicit hybrid finite-difference
scheme of the second-order approximation in spatial variables. This scheme is characterized by monotony and
minimum scheme viscosity and dispersion, which allows calculations to be performed over a wide range of values of
the Reynolds and Froude numbers [7]. In the splitting method, problem (2) is solved stage by stage. At a certain
time tn = n∆τ (∆τ is the time step and n is the number of steps), let the velocity field vn be known. Then, the
scheme of determining the unknown functions at the time tn+1 = (n + 1)∆τ can be represented as follows. In the
first stage, we determine an auxiliary grid function ṽ that takes into account only convective and viscous terms and
buoyancy forces but ignores the condition div v = 0:

ṽ − vn

∆t
= −(vn∇)vn +

1
Re

∇2vn +
sg

Fr2 |g|(D/Λ)
.

In the second stage, the pressure field is found from the solution of the Poisson equation taking into account the
condition ∇vn+1 = 0:

∇2p =
∇ṽn

∆t
.
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In the third stage, we calculate the velocity field in the (n + 1)th time layer:

vn+1 = ṽ −∇p ∆t,

after which, using the obtained value of vn+1, we solve the equation for the salinity perturbation

sn+1 = sn − ∆t(vn+1∇)s − ∆t ∆s

Pe
+

∆t D(u sin θ + v cos θ)
Λ

.

The calculations were carried out until the time 10Tb = 252, to which the results of the experiments cor-
responded. The computational grid contained 180 points on the coordinate z and 180 points on the coordinate θ

(the sizes of the first cell 0.07× 0.044 cm are sufficient to resolve the fine structure of the flow). The time step was
chosen automatically from the Courant condition. The calculations were performed on a PARAM-10000 supercom-
puter (Ultra Sparc II, 400 MHz). All numerical data presented for comparison with the experimental results were
converted to the Cartesian coordinates in which the cylinder moves relative to the motionless fluid.

3. Experimental Technique. The experiments were carried out in a 240×40×60 cm tank with transparent
walls. The tank was filled with a linearly stratified aqueous solution of table salt using the method of continuous
displacement. Before each experiment, we measured the density distribution and the buoyancy period by records
of the oscillations induced by a density marker and recorded by an electrical conductivity probe (the error did not
exceed 5%). In this series of experiments, the buoyancy period was Tb = 25.2 sec.

We studied the flow pattern past a horizontal cylinder of diameter D = 2.5 cm which was towed at a constant
velocity in the center of the tank. The cylinder was fastened with thin knifes to a carriage, which moved in guides
at a velocity U = 0.08–3.00 cm/sec (step ∆U = 0.02 cm/sec; the error in determining the velocity was not more
than 5%). The conditions of the experiments (C = 150–560, Fr = 0.12–0.73, and Re = 20–75) corresponded to a
laminar wake. Before the beginning of each experiment, the cylinder was placed near the end wall of the tank.

Visualization was performed with an IAB-458 shadow device using the Maksutov method in two modifi-
cations: “vertical slit–knife” or “slit–filament in focus.” In view of the linear relation between the density and
refraction coefficient of the salt solution, the horizontal component of the refraction coefficient is visualized in the
first method and its modulus in the second method. Density markers were produced by vertically rising gas bubbles
or falling sugar crystals. The characteristic life time of a marker was 40–100 sec, and its thickness was not more
than 1 mm. The error in measuring the fluid velocity did not exceed 10%.

The buoyancy period, salinity profiles, and salinity variation at a chosen point were measured by a single-
electrode contact specific-conductivity probe. The probe was calibrated before each series of experiments directly
in the laboratory tank using the methods of lift-and-drop to a height of 0.5 cm and sweep-vibrations. The static
and dynamic errors of the measurements were 15%.

In 24 h after the tank with the cylinder installed under the carriage was filled, when all perturbations
decayed and the density distribution became uniform, we measured the salinity profile and the buoyancy period on
the chosen horizon. Then, vertical markers — flow profile markers — were created in the tank and the cylinder was
towed over the entire length of the tank. The next experiment was performed after the damping of all motions and
the salinity (density) perturbations from the previous towage.

4. Main Results. For comparison with the experiment with an aqueous solution of table salt (NaCl),
the calculations were performed for the following parameter values: ν = 0.01 cm2/sec, κs = 1.41 · 10−5 cm2/sec,
Tb = 25.2 sec, U = 0.1–0.4 cm/sec, and D = 2.5 cm.

A typical shadow pattern of the laminar stratified flow around the cylinder and the calculated map of salinity
isolines in a coordinates system attached to the cylinder are given in Fig. 2 (the cylinder moves from right to left).
In the shadow pattern, which is obtained by the “vertical slit–filament in focus” method, one can see the structure
of the field of the salinity gradient modulus (Fig. 2a). The markers visualize the velocity profiles in the leading
perturbation and in the cylinder wake. Figure 2b gives the salinity perturbation field.

In Fig. 2, one can also see the common elements of the observed and calculated patterns: the leading
perturbation, the velocity and density wakes past the cylinder, and the internal-wave field. The leading perturbation
consists of the blocked fluid immediately in front of the body and nonstationary internal waves, which smoothly
become attached internal waves behind the cylinder. In both the shadow and calculated patterns, one can see the
wedge-shaped boundaries of the region of complete blocking in front of the cylinder.

The distorted semi-circles behind the cylinder in Fig. 2a visualize the phase surfaces of the attached internal
waves. Dark lines correspond to crests, and gray lines to troughs. The crests and troughs of the attached waves are
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Fig. 2. Stratified flow around the cylinder (D = 2.5 cm, U = 0.1 cm/sec, Tb = 25.2 sec, Fr = 0.16,
and Re = 25): (a) shadow pattern; (b) calculated salinity isolines.

also clearly evident in the salinity isoline pattern (Fig. 2b). In both cases, three waves are visualized, whose length
agrees with that calculated by linear theory: λ = U0Tb [5]. However, the calculated pattern is more informative
since it allows one to determine not only the shape of the wave crests and troughs but also the salinity perturbation
magnitude, and hence, the particle displacement in the wave and the position of the regions of the maximum
amplitudes (the centers of the closed isolines).

In both the calculations and the experiment, the phase surfaces of the attached internal waves deviate from
semi-circles in the vicinity of the density wake, where they are entrained in the middle flow due to the Doppler effect.
The largest density perturbations are observed near the axis of motion in the leading perturbation and immediately
behind the cylinder. Generally, the experimentally observed and calculated flow patterns are structurally similar.
More detailed results of experimental studies of blocked-fluid parameters ahead of a two-dimensional obstacle are
given in [12].

The salinity perturbation field has a different structure. The family of almost parallel isolines in front of
the cylinder indicates the presence of blocking (pushing of the fluid ahead of the body). The inclined lines which
gradually become concentric circles visualize nonstationary leading internal waves (to which the inclined half-lines
in Fig. 2a correspond), which smoothly become attached waves behind the body. However, near the flow axis in
the wake past the body, the density variation ceases to be monotonic. In the bottom region, a central high-gradient
envelope (the condensation of isolines in Fig. 2b and light band behind the body in Fig. 2a) adjoins the obstacle.
Previously, high-gradient elements of wake structures have been observed in experiments but not visualized in
numerical calculations.

The occurrence of an interior layer in the wake is due to the general restructuring of the stratification by the
moving cylinder. Because of the blocking, i.e., deceleration and entrainment of the fluid, a more homogeneous fluid
collected from the body trajectory is accumulated in front of the two-dimensional cylinder. The entrained fluid is
replaced by a new fluid, which is supplied from the fluid layers previously separated vertically and is submerged
under the action of buoyancy forces. In the regions of contact of the fluid of different density behind the cylinder,
one or several high-gradient layers are formed, depending on motion parameters. Low Froude numbers flows are
classified according to the number and position of density discontinuity surfaces in the wake [12]. Previously, the
high-gradient layers observed in flows over two-dimensional and three-dimensional obstacles have not been found in
numerical calculations.

The density perturbation profiles behind the cylinder calculated at various distances from its rear critical
point are given in Fig. 3. Salinity perturbations are plotted on the additional axis. Point 0 corresponds to the center
of the two-dimensional cylinder. In each section on the axis of motion there is a thin layer in which the density
gradient is several orders of magnitude larger than the background density gradient. In the section the nearest to
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Fig. 4. Visualization of layers on the wake boundary (a) and measured density variations during
the flow formation behind the cylinder (b) (D = 2.5 cm, U = 0.1 cm/sec, Tb = 25.2 sec, Fr = 0.16,
and Re = 25).

the cylinder, a density jump is formed because of the merging of the layers separated vertically in the unperturbed
medium.

In the given density distributions, the wave perturbations are manifested only in the section the nearest to
the body, at a distance from the rear critical point of the cylinder equal to the wavelength, which is indicative of
the influence of the waves the nearest to the cylinder (see Fig. 2). With distance from the cylinder, the density
jump is gradually smoothed out because of diffusion. On the axis of motion in the vertical sections the nearest to
the cylinder, the magnitude of the density jump obtained by calculations (see Fig. 3) corresponds to the merging of
the unperturbed-fluid layers separated vertically by a distance h ≈ 0.7 cm. This results agrees with measurements
of density variations on the high-gradient envelope of the wake.
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The measurements were performed in the initial stage of flow formation, in which the envelope of the density
wake past the obstacle is split (Fig. 4a). During the flow formation, the envelopes move toward each other at an
almost constant velocity. After they merge, a central layer is formed on the axis of motion in the density wake. The
slow uniform motion of the envelopes during the flow formation allows the magnitude of the density jump to be
measured directly by the single-electrode electrical-conductivity probe with higher accuracy than in the ordinary
probing, because of the absence of electrical noise and additional vibrations.

The spatial resolution of the probe is 2.5 mm, which exceeds the thickness of the layer. However, the high
sensitivity of the probe allows one to estimate the thickness and density change. For this purpose, the probe
was installed on the carriage and moved together with the cylinder at a fixed distance from it. During the flow
formation, the merging inclined envelopes of the wake form a wedge-shaped region behind the cylinder (Fig. 4a).
As the cylinder moves from left to right, the inclined layer moving from top to bottom crosses the probe placed at
the fixed horizon.

In such measurements, the static and dynamic graduation of the probe is performed immediately before the
experiment by the method of lift-and-drop to a height of 0.5–1.0 cm. The graduation results make it possible to
directly determine the deviation of the fluid layers from the initial level in the initial density field (the parameter ∆).
A record of the electrical conductivity probe is given in Fig. 4b.

The time variation in the output signal of the electrical conductivity probe indicates that the density field
undergoes restructuring over the entire tank simultaneously with the beginning of motion of the cylinder. By the
moment the cylinder appeared in the field of the shadow device (t = 50), the displacement of the fluid particles
reaches ∆ = 1.4 mm, indicating a decrease in the density on the horizon of the probe location. Slow growth in the
signal is replaced by a rapid change at t = 150 sec. Figure 4a corresponds to exactly this time (the moment the wake
envelope crosses the working volume of the probe). Since the scale of resolution of the probe is much larger than
the shell thickness, the probe output signal smooths out. Nevertheless, the displacements of the layers determined
by the above-mentioned method are 2–3 mm, which agrees with the calculation results given in Fig. 3. In this case,
the density gradient in the envelope increases severalfold (depending on motion parameters) in comparison with the
background density gradient [12]. During the motion of the cylinder, the density profiles behind the body smooth
out gradually because of diffusion, which corresponds to the reduction in the contrast of the envelope images in the
shadow patterns (see Fig. 4a) and is supported by direct measurements of electrical conductivity. Next, the probe
output signal begins to decrease gradually, indicating recovery of the initial density distribution after the passage
of the cylinder.

The results of measurements and numerical and analytical calculations of velocity profiles in front of the
cylinder are presented in Fig. 5. Vertical velocity profiles are plotted on the additional axis. The analytical
calculations of the perturbations of the horizontal velocity components u were performed using the results of [5].
Converting the expressions obtained in [5], we write the horizontal velocity as

u

Uk2
0D

2
= −2π

Y1(k0r)
k0r

cos 2θ − 2πY0(k0r) sin2 θ

+ 8
∞∑

n=0

4n2 + 4n − 1
(4n2 − 1) (2n + 3)

J2n+1(k0r) cos(2n + 1)θ. (3)

Here r and θ are the radius-vector and the polar angle in the cylindrical coordinate system attached to the cylinder,
k0 = N/U , and Yn(k0r) and Jn(k0r) are Neumann and Bessel cylindrical functions, respectively. Expression (3) is
significantly simplified on the axis of motion, where θ = 0 and the trigonometric functions vanish:

u

Uk2
0D

2
=

2π

k0|x| [H1(k0|x|) sgn x − Y1(k0|x|)]. (4)

Here H1(k0|x|) is the complete Struve function and Y1(k0|x|) is a first-order Neumann function.
At the center of the blocked-fluid region, the velocity perturbations decay monotonically with distance from

the body. This leads to variation in the position of the zero streamline, on which the fluid and body velocities are
equal, i.e., in fact, there is deformation of the cylinder contour in the flow [6].

The position of the extreme point of the intersection of the contour of the completely blocked fluid and the
line of the center of the wake in front of the cylinder agrees with the parameters of the experimentally observed
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Fig. 5. Velocity profile in front of the cylinder in various vertical sections (D = 2.5 cm,
U = 0.135 cm/sec, Tb = 25.2 sec, Fr = 0.22, and Re = 33.8): the solid curves refer to
experimental data and the dashed curves to calculations using formula (5.1); the points
are results of numerical calculation for x/D = 1.75 (1), 2.3 (2), 3.7 (3), 5.5 (4), 6.6 (5),
and 8.9 (6); the arrows show the fluid velocity direction.

blocking of the fluid during slow motion of the cylinder. Irrespective of the shape of the obstacle, the velocity profile
in the leading perturbation has a wavy structure and is symmetric about the central horizontal plane [4], which
agrees qualitatively with the calculation results (see Fig. 2). The main maximum of the perturbation is on the axis
of motion, where the direction of the fluid velocity coincides with the direction of motion of the cylinder. Above
and below the regions of the blocked fluid and the wake, there are jets with alternating velocity directions. Near
the body, the vertical distance between the first zero values of the velocity is approximately equal to the height of
the cylinder.

The distance between the centers of the jets adjoining the blocking region exceeds the height of the cylinder
and increases with distance from the body, which is inconsistent with the ideal fluid models, which ignore the
real cylinder shape [5]. In addition, the position of the lines of the jet maxima and minima is determined by the
flow regime. The distances between the unidirectional jets in the upper and lower half-spaces for the given section
increase with increasing Froude number in proportion to the length of the attached internal wave. The results on the
amplitude and phase do not agree with experimental data. In this case, the difference in the phase patterns is due
to the fact that the dipole model ignores the dimensions of the cylinder and the position of the jets is determined
only by the length of the attached internal wave. From the calculation results [6], it follows that a decrease in the
Froude number leads to a large deformation of the contour of the zero stream function, which in fact defines the
cylinder shape when a real body is replaced by a mass dipole. Formula (4) implies that as the Froude number
decreases, the streamline contour is highly stretched in the direction of motion of the body and its frontal point
recedes from the source. In this case, the streamline contour is compressed and its height becomes smaller than the
height of the streamline cylinder.

For small values of the Froude number, a nearly planar segment similar in dimension to the cylinder diameter
is observed on the experimental profile of the horizontal velocity component near the axis of motion in front of the
cylinder, i.e., in experiments with bodies of large dimension (D > λ), nonstationary internal waves do not penetrate
into the region of complete flow blocking, which agrees with the data of [12].

The numerical calculation provides high-accuracy predictions of the phase structure of the velocity field in
front of the cylinder and the positions of the lines of minima and maxima; the calculated and measured velocity
values almost coincide (see Fig. 5). The slight difference in the velocity values calculated and measured on the
peripheral jets is due to the smallness of the velocity perturbations in this region, which increases the measurement
error.
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Fig. 6. Calculated (solid curves) and measured (points) velocity perturbation distributions on the
axis of motion in front of the cylinder (D = 2.5 cm and Tb = 25.2 sec): 1) U = 0.1 cm/sec, Fr = 16,
and Re = 25; 2) U = 0.17 cm/sec, Fr = 0.27, and Re = 43; 3) U = 0.21 cm/sec, Fr = 0.34, and
Re = 53; 4) U = 0.28 cm/sec, Fr = 0.46, and Re = 71; 5) U = 0.4 cm/sec, Fr = 0.64, and Re = 101.

Calculated and measured velocity distributions on the axes of motion in front of the cylinder versus distance
to the frontal critical point of the cylinder are presented in Fig. 6. In both the numerical calculations and exper-
iments, the velocity perturbation decreases monotonically with distance from the body. In the slowest regimes, a
blocking region occurs in the immediate proximity of the cylinder. The measured and calculated velocity perturba-
tions are in good agreement. The nonmonotonic nature and oscillations of the velocity in the leading perturbation
for low velocities of motion of the cylinder are due to the effect of flow reflection from the end wall of the tank. In
the numerical calculations, oscillations are a consequence of the boundary condition imposed on the outer contour
of the computation domain.

Conclusions. The results of flow visualization and velocity measurements for the uniform motion of a
horizontal cylinder in a continuously stratified fluid are in fair agreement with the results of numerical calculations.
In the computational and laboratory experiments, the blocked fluid in front of the cylinder is surrounded by a
field of nonstationary waves whose phase surfaces are located on inclined half-lines. In the analytical models that
use insufficiently rigorous additional assumptions (Boussinesq approximation, neglect of the singular components
of solutions due to viscosity and (or) diffusion, simplified boundary conditions), the phase surfaces in the leading
perturbation are arranged horizontally. The high-gradient layers in the cylinder wake observed in experiments for
arbitrary (in particular, minimal) values of the Froude number were revealed for the first time in the computational
experiment.
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